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Abstract: We introduce a method to automatically detect drusen in dry age-related macular 
degeneration (AMD) from optical coherence tomography with minimum need for layer 
segmentation. The method is based on the en face detection of drusen areas in C-scans at 
certain distances above the Bruch’s membrane, circumventing the difficult task of pathologic 
retinal pigment epithelium segmentation. All types of drusen can be detected, including the 
challenging subretinal drusenoid deposits (pseudodrusen). The high sensitivity and accuracy 
demonstrated here shows its potential for detection of drusen onset in early AMD. 
© 2017 Optical Society of America 

OCIS codes: (170.4500) Optical coherence tomography; (170.4470) Ophthalmology; (100.6890) Three-dimensional 
image processing; (170.1610) Clinical applications. 
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1. Introduction 

Age-related macular degeneration (AMD) is a degenerative retinal disease and a leading 
cause of vision loss in older adults [1, 2]. It is estimated that 196 million people worldwide 
will have AMD by 2020 [3], 5-15% of which would progress to the advanced stage of the 
disease. In the early stage, AMD is characterized by asymptomatic deposition of clustered 
extracellular byproducts of photoreceptor metabolism on the retinal pigment epithelium 
(RPE), known as drusen. As the disease progresses and drusen enlarges, the RPE degenerates 
to a state of geographic atrophy, causing the death of RPE cells and subsequent loss of 
photoreceptor cells and choriocapillaries. These early and intermediate stages are customarily 
referred to as dry AMD. The late stage, known as exudative or wet AMD is characterized by 
choroidal neovascularization (CNV), which typically conduces to irreversible lesions caused 
by leakage, i.e. subretinal and intraretinal fluid accumulation and RPE detachment. Although 
currently only the neovascular stage is treated by clinicians, early detection of dry AMD is 
vital to slow down the progression of the disease by intake of nutrition supplements as well as 
control of body weight and high-risk activities such as cigarette smoking. 

Drusen was first discovered in the XIX century and its sedimentary nature was understood 
from very early [4]. It begins to buildup due to the progressive deterioration of the Bruch’s-
membrane’s conductivity and is mainly composed by lipoproteins [5]. Based on its 
appearance and location in retinal images, drusen has been classified as cuticular, soft or 
subretinal drusenoid deposits; each posing its own challenges for their automated 
segmentation and quantification. Cuticular drusen is typically small with sharp borders, is 
located below the RPE and has not shown predictive value for disease evolution. Soft drusen, 
on the other hand, appears as a bigger lesion with blurred borders and has been associated 
with further progression to a later stage of AMD [6]. Subretinal drusenoid deposits 
(previously known as reticular pseudodrusen) are located between the retinal pigment 
epithelium (RPE) and the ellipsoid zone [7], are more prevalent in later age AMD onset [8], 
and have been associated with high prevalence of progression to a late AMD stage [9–12]. 

For many years, color fundus photography has been the gold standard for drusen imaging 
in dry AMD. This technique takes advantage of the pigmentation variation in the retinal 
fundus caused by accumulation of cholesterol, lipofuscin and other metabolic waste products 
[13–18] to visualize drusen. In this modality, cuticular drusen is observed as a densely 
packed, white colored arrangement, while soft drusen appears in white-yellow color as lower-
contrast round structures with larger diameter. Subretinal drusenoid deposits, on the other 
hand, appear in a slightly whiter/blue color owing to its localization above the RPE. Despite 
the large field of view available in fundus photography, other imaging modalities have been 
used in attempts to overcome the challenges faced by this technique, namely inhomogeneous 
illumination and poor contrast that impede accurately discerning drusen boundaries. For 
instance, fluorescein angiography (FA), despite being a more invasive procedure that requires 
intravenous injection, can detect a larger amount of cuticular drusen spots than fundus 
photography [6]. However, evaluation based on FA images alone is confounded by some 
drusen that does not fluoresce and hence, FA is typically used together with fundus 
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photography. On the other hand, a less invasive modality known as fundus auto fluorescence 
(FAF) relies on short wavelength excitation of the fluorophore N-retinylidene-N-
retinylethanolamine (A2E) found in lipofuscin [19] and detection of subsequent tissue 
fluorescence by a confocal scanning laser ophthalmoscope. This technique can display soft 
drusen and subretinal drusenoid deposits, but the second cannot be detected in the central 
zone due to the blockage of the excitation light by macular pigment [20], and outside the 
central zone can be misidentified with other AMD phenotypes [21]. Yet another alternative 
modality is infrared scanning laser ophthalmoscopy, which has shown ability to detect a 
larger drusen quantity than fundus photography owing to the deeper penetration with reduced 
scattering, characteristic of the central wavelength of the light source used [22]. All of these 
technologies are two-dimensional (2D) in nature, not allowing analysis of drusen in the axial 
dimension. Their inability to observe slabs at different depths into the retinal tissue makes it 
difficult to differentiate drusen from confounding spots [23, 24]. 

Several semi-automated image-processing methods have been proposed to detect drusen 
location, number and size. In early works, researchers tried to first homogenize the 
background and then apply a thresholding scheme based on intensity distributions rather than 
single pixel intensity levels for drusen detection. For instance, Rapantzikos et al. [14] utilized 
a complex multi-level histogram equalization routine to enhance drusen contrast and 
incorporated a larger number of descriptors in order to achieve unsupervised detection. 
Alternatively, statistical differences of the texture of drusen vs healthy regions have been used 
to differentiate them [26]. On the other hand, region growing methods have been used to 
complete the drusen detected by a method that analyzed the collective behavior of pixel 
brightness in local regions of incrementing size [13] as well as to recognize the healthy retinal 
area rather than the drusen area in the inverse segmentation approach proposed by Ref [15]. 
More recently, machine learning has also been applied to drusen detection and classification 
[16]. For a more comprehensive comparison of the methods found in this extensive literature, 
we refer the reader to the informative review article in Ref [10]. 

A non-invasive alternative to display all types of drusen both en face and cross-sectionally 
is optical coherence tomography (OCT) [27–32]. Over the past 25 years, OCT has 
consolidated as the most versatile technology used in ophthalmic care. It has shown value in 
the diagnosis and assessment of vision-threatening ocular diseases such as glaucoma [33, 34], 
diabetic retinopathy (DR) [35], and AMD [36]. Unlike all of the 2D techniques mentioned 
above, OCT does allow depth-resolved analysis of retinal tissue. Logically, the methods 
developed for drusen detection on OCT images have exploited its three-dimensional (3D) 
nature. Generally, they heavily rely on the segmentation of the RPE in cross-sectional images 
of the retina (B-scans) and further generation of an estimated “healthy” baseline by 
interpolation methods [37, 38]. Several approaches have been proposed to solve the problem 
of accurately delineating the pathologic RPE boundary in an automated manner, based on 
active contours models (deformable spline) [39], dual-scale gradient maps [40], graph search 
[41, 42], probabilistic models [43] and more recently, deep learning [44]. Accurate detection 
of layer boundaries with irregular shape in diseased cases is a major line of active research in 
OCT image processing, but RPE segmentation errors still abound in current techniques. An 
additional challenge is the task of determining a reliable threshold that recognizes RPE 
segmentation elevations caused by actual drusen from healthy regions in all cases [45, 46]. In 
consequence, most of these methods can detect neither early drusen deposits that do not result 
in significant elevation of the RPE nor subretinal drusenoid deposits located above the RPE, 
and could even overestimate the size of drusen (Fig. 1). Only recently, one method based on 
retinal layer segmentation showed ability to detect all types of drusen, limited to elevations 
larger than 20 µm [47]. 
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Fig. 1. Challenges faced by drusen detection from cross-sectional segmentation of the retinal 
pigment epithelium (RPE). (A) Representative cross-sectional scan. Subretinal drusenoid 
deposits are white arrows and a region of no elevation between two soft drusen domes is 
indicated by the yellow arrow. (B) Segmentation of eight retinal layer interfaces performed 
automatically without manual correction by an algorithm based on directional graph search 
[42]. According to the position detected for the inner RPE interface, drusen would be likely 
undetected at the white arrows due to minimal elevation of the interface and overestimated at 
the yellow arrow positions. ILM – Inner limiting membrane. NFL – Nerve fiber layer. GCL - 
Ganglion cell layer. IPL – Inner plexiform layer. INL – Inner nuclear layer. OPL – Outer 
plexiform layer. ONL – Outer nuclear layer. EZ – Ellipsoid zone of the photoreceptors. RPE – 
Retinal pigment epithelium. BM – Bruch’s membrane. CH – choriocapillaris. 

In this report, we introduce a highly sensitive drusen detection algorithm that uses C-scans 
contained in reflectance OCT slabs at different depths. This method does not need to perform 
delineation of the pathologic RPE boundary. By this approach, we can exploit OCT’s three-
dimensionality for the detection of all types of drusen while requiring segmentation of only 
the Bruch’s membrane/choriocapillaris interface. 

2. Data acquisition 

Healthy participants and participants diagnosed with dry AMD were imaged at the Casey Eye 
Institute of Oregon Health & Science University (OHSU). All participants were enrolled after 
informed consent. The protocol was approved by the Institutional Review Board/Ethics 
Committee of OHSU, and adhered to the tenets of the Declaration of Helsinki. 

A pair of successive volumetric scans acquired at orthogonal raster directions were 
collected from one eye of each participant two times by using a commercial spectral domain 
OCT system (RTVue-XR; Optovue, Fremont, CA). The instrument operates at a central 
wavelength of 840 nm, with a full-width half-maximum bandwidth of 45 nm and axial scan 
rate of 70 kHz. Each scan was captured in less than 3 seconds, which covers a 3 × 3 mm2 area 
with a 2 mm depth, comprising a total of 304 × 304 × 2 A-scans. The structural data was 
generated by averaging the two B-scans acquired consecutively at each scanning position. 
Then, each pair of volumetric scans underwent registration and merging by an eye motion 
correction algorithm incorporated in the Angiovue software [48, 49]. As a result, two motion-
free data cubes containing reflectance OCT data of the retinal layers were obtained for each 
eye. 

3. Algorithm 

3.1 Overview 

The algorithm was implemented using the Matlab 2013a release (Mathworks, Natick, MA, 
USA). Segmentation of the Bruch’s membrane interface was automatically performed by a 
directional graph-search algorithm [42]. The drusen detection algorithm consisted of three 
main steps: pre-processing, drusen segmentation and post-processing (Fig. 2). The first step 
selects two slabs of seven C-scans each at different heights from the Bruch’s membrane, 
homogenizes the background and increases the drusen contrast by averaging groups of three 
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adjacent C-scans in the axial direction. In the drusen segmentation step, averaged C-scans at 
each slab undergo a dual-scale filtering scheme followed by Otsu thresholding that results in 
binary maps of the drusen area. Finally, the post-processing step consists of vessel shadow 
artifacts removal and subsequent smoothing of the detected drusen area. Each of these steps 
will be described in depth in the following sections. 

 

Fig. 2. Flow chart of the drusen detection algorithm. 

3.2 Pre-processing step 

Segmentation of only the Bruch’s membrane was automatically performed on each B-scan of 
the reflectance OCT data by a directional graph search method [42] while the operator 
supervised the outcome. Manual correction guided by local graph search function could be 
done if necessary in custom processing software - the Center for Ophthalmic Optics & 
Lasers-Angiography Reading Toolkit (COOL-ART) [42, 50]. The segmentation on single B-
frame could be propagated forward along subsequent B-scans. B-scan images were flattened 
to the detected boundary. Two slabs each containing seven C-scans were extracted after 
flattening, located at 0-6 pixels and 20-26 pixels above the Bruch’s membrane respectively. 
One of the C-scans for each slab is represented in Fig. 3. In healthy eyes, these two slabs 
would be located respectively at the RPE and right above the ellipsoid zone (Fig. 3(A) and 
Fig. 4). In diseased eyes, soft drusen, cuticular drusen or subretinal drusenoid deposits can be 
found. In soft drusen, the C-scans of the outer slab appear dark in the regions with RPE 
elevation (Fig. 3(B) green arrow and Fig. 4) and bright elsewhere while in the C-scans of the 
inner slab, the drusen area is brighter than its surroundings. If the RPE outer boundary is 
above the inner slab, the inner slab will display black regions in the middle of soft drusen 
regions. Cuticular drusen appears dark in the outer slab and could be absent from C-scans in 
the inner slab when the EZ elevation is too marginal. Even when cuticular drusen reaches the 
inner slab, its size is usually smaller than in the outer slab due to their punctate appearance. 
Subretinal drusenoid deposits are located above the RPE and appear bright in both the inner 
and the outer slabs (Fig. 3(B), yellow arrows). 
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Fig. 3. Drusen visualization of C-scans contained in two slabs at different depths. (A) B-scan 
of a normal eye (B) B-scan of an eye with dry AMD containing soft drusen and subretinal 
drusenoid deposits. (A1, B1) The innermost C-scan contained in the blue slab. Drusen area 
appears hyper-reflective compared to the background in (B1). (A2, B2) The outermost C-scan 
contained in the red slab. Soft drusen areas and vessel shadows appear hypo-reflective 
compared to the background in (B2) but subretinal drusenoid deposits are only evident in the 
blue slab. Yellow dashed lines indicate the position of the representative B-scans. Green 
arrows indicate soft drusen positions and yellow arrows indicate subretinal drusenoid deposits. 

 

Fig. 4. Representation of how three types of drusen are observed in each slab. Inner slab (blue) 
is located right above the ellipsoid zone (EZ) interface, and only appears bright in the event of 
drusen. If the outer boundary of RPE in a soft drusen region is above the inner slab, a black 
region surrounded by bright pixels is observed. The outer slab (red) appears normal in the 
event of subretinal drusenoid deposits because they locate above the RPE, and dark for other 
types of drusen. IZ – Interdigitation zone. 

Then, a hybrid contrast map similar to the generated in Ref [51]. was performed as an 
initial diagnosis step to separate scans containing drusen from those without. First, the 
averaged reflectance of the seven C-scans forming each slab was calculated and normalized. 
Then we computed the global contrast of en face reflectance image (Eq. (1) as well as the 
local contrast (LC) between pixels and their immediate surroundings (Eq. (2), 
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where cw is the average intensity within a central circle at (x, y) with a diameter of 60 μm, 

and sw is the average intensity of the surrounding ring with an inner diameter of 60 μm and 
outer diameter of 130 μm. A hybrid contrast map was generated for each of the two projected 
slabs by multiplying the global and local contrasts at each pixel. Then, the maximum value of 
the two contrast maps were found and averaged. A threshold to identify healthy retina from 
that containing drusen could be easily determined (Fig. 5). 

 

Fig. 5. The bar graph of mean maximum hybrid contrast ratio in a scan of each participant. 
Thirteen participants were imaged in each group. A threshold at 3.5 can completely separate 
the normal eyes (green bars) and the drusen eyes (red bars). 

 

Fig. 6. 3D mean filter indicated in operation 6 of Fig. 2. Panel (A) describes the steps followed. 
Each slab contains seven consecutive C-scans, each containing the reflectance data at a 
different distance from the Bruch’s membrane. Every trio of adjacent C-scans is averaged, 
resulting in five averaged C-scans per slab. Panel B shows an example of one trio of adjacent 
C-scans from the inner slab containing drusen, before and after averaging and normalization. 
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In the first processing step, averaging groups of three adjacent C-scans (Fig. 6) along 
seven depths within each slab generates five en face images with enhanced contrast between 
drusen area and background. The reflectance values of the resulting averaged en face images 
were normalized to values between 0 and 1 and passed to the next processing step. 

3.3 Drusen segmentation 

The combination of Top-Hat transform and Otsu thresholding has been used before on 
medical image segmentation using grayscale images with uneven illumination [52]. In this 
step, they are implemented to detect drusen in each of the averaged en face images contained 
in each slab. The Top-Hat transform operates by extracting elements of the input image that 
are smaller than a pre-defined structuring element and are brighter than their surroundings. 
Therefore, the dark areas in the outer slab were inversed, since the Top-Hat transform is only 
suitable for bright objects. For each of the five averaged en face images in each slab, the 
transform was applied twice using structuring elements with dual scales (disks of radii 60 and 
15 pixels) followed by Otsu thresholding. Then, a logical OR between the two outputs 
corresponding to different disk scales was applied, followed by median filtering to generate 
five drusen maps in each slab. Generation of one drusen map in the inner slab is shown in Fig. 
7. By applying a dual-scale approach, both large drusen and small drusen can remain in the en 
face drusen maps. 

 

Fig. 7. Dual-scale filtering step. (A1) The averaged C-scan obtained in Fig. 6(B) was processed 
by a 5 × 5 median filter and Top-Hat transform (disk of radius 60 pixels). (B1) The binary 
image of (A1) after Otsu thresholding. (A2) The same processing in (A1) but using a disk of 
radius 15 pixels. (B2) The binary image of (A2) after Otsu thresholding. The areas enclosed by 
red circles are examples of regions detected in (B2) better than in (B1). (A3) The combination 
of (B1) and (B2) by a logical OR. (B3) The binary image (A3) after filtering by 5 × 5 median 
filter. 

At this point, ten binary images (five per slab) equivalent to the one shown in Fig. 7(B3) 
have been generated. To refine the drusen detection a continuity examination routine 
followed. A 9 × 9 pixel window was moved along the binary images with one pixel step in 
each axis. Within the window at each position, the Jaccard similarity metric between the 
windows 1W and 2W of two axially adjacent binary images was computed, defined in Eq. (3). 

Jaccard similarity coefficient values range from 0 to 1. Every position that had a coefficient 
larger than 0.5 was set to one while positions with values lower than that were filtered out 
(Fig. 8). The output of the continuity examination step was four binary images per slab. At 
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each slab these four images were added and pixels with value larger than 2 were set to 1 while 
the remaining pixels were set to zero. 

 1 2

1 2

W W
J

W W

∩
=

∪
 (3) 

 

Fig. 8. (A) An averaged C-scan corresponding to the inner slab. (B) One of the five binary 
images in the inner slab. (C) The inner slab mask after continuity detection. 

3.4 Post-processing step 

At this point, the inner slab has detected most of the drusen area, but its mask is still dark at 
the locations where elevation of the RPE is too high. The outer slab has detected most of the 
soft drusen area (Fig. 9(A1)-9(A2)), small dark regions under drusen where RPE does not 
exhibit significant elevation (Fig. 9(D)-9(E)) and shadows from large vessel in the inner 
retina. In order to remove shadow artifacts, an opening operation with disk size equal to seven 
pixels was performed. Then, a logical OR between the binary masks of both slabs (Fig. 
9(A2)-9(B2) followed by an additional median filter step generated the definitive drusen area 
map (Fig. 9(C). 

 

Fig. 9. Post processing step. (A1) Average of C-scans in the outer slab. (A2) Outer slab mask 
after large vessel shadow removal and continuity detection. (B1) Average of C-scans in the 
inner slab. (B2) Drusen mask of the inner slab (same as Fig. 8(C)). (C) The final segmentation 
result. (D) A representative B-scan showing a large soft drusen region to the right of a small 
drusen region (indicated by a yellow arrow) that does not significantly elevates the RPE (E) 
and is better detected by the outer slab in A1-A2. 

4. Evaluation 

To assess the accuracy and robustness of the proposed method, we evaluated the repeatability 
of the calculated drusen area and compared our drusen segmentation results en face with 
results from cross-sectional manual RPE delineation on twenty randomly selected B-scans per 
volume. For manual delineation the drusen boundary was contoured by two experienced 

                                                                              Vol. 8, No. 11 | 1 Nov 2017 | BIOMEDICAL OPTICS EXPRESS 5059 



graders (AH and YL) and the results were compared to automated detection by computing the 
true positive area fraction (TPAF), false positive area fraction (FPVF), accuracy rate (ACC) 
and Dice similarity coefficient (DSC). TPAF indicates the rate of correctly detected area (Eq. 
(4), where TPA denotes the true positive set and MGA  the area calculated from manual grading. 

FPAF denotes the fraction of incorrectly detected area (Eq. (5), where FPA indicates the set of 

false positives and A  is the total area. ACC indicates the detection accuracy rate (Eq. (6), 
where TNA is the set of true negatives. DSC is used for comparing the similarity between the 

automated segmentation results and manual grading (Eq. (7), where aA and mA are the drusen 

areas detected by a grader and by the automatic drusen detection algorithm respectively; and 

a mA ∩ is the drusen detected by both methods. 
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Data from one eye of 13 participants with drusen was collected and analyzed. All three 
types of drusen could be detected (Fig. 10) and the average running time was 22 seconds. The 
signal strength index (SSI) of the scans used for this study was 63 ± 7 and those with signal 
strength index lower than 55 were still rejected, as recommended by the manufacturer. 
Excellent repeatability was observed between two consecutive volumetric scans of each eye, 
resulting in a coefficient of variation of 6.4%. The results of the evaluation metrics described 
above are summarized in Table 1. 
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Fig. 10. Demonstration of three types of drusen detected by the algorithm in two dry AMD 
cases. (A1, B1) en face images representing the mean of C-scans in the inner slab. (A2, B2) 
representative B-scans. Soft drusen observed as an isolated structure with significant RPE 
elevation is indicated by a green arrow in A2. Subretinal drusenoid deposits above the intact 
RPE are indicated by blue arrows in B2. A white arrow in B2 indicates cuticular drusen, 
evidenced by its saw-tooth appearance connected to adjacent structures. (A3, B3) the drusen 
regions automatically detected by the algorithm. 

Table 1. Comparison of drusen area between automatic segmentation and manual 
grading by certified graders AMH and YL.* 

TPAF (%) FPAF (%) ACC (%) DSC (%) 

YL 82.78 ± 5.91 3.15 ± 1.98 90.54 ± 2.83 88.95 ± 3.45 

AMH 73.72 ± 6.93 2.66 ± 2.74 85.22 ± 3.92 83.84 ± 4.28 
* Mean ± standard deviation 

 
Overlapping between the manual and automatic drusen segmentation was also visually 

investigated. A certified grader identified the A-line positions affected by drusen in 152 
alternating B-scans on two cases and the missing frame was interpolated. Morphological 
opening smoothed the boundaries of the manual segmentation after interpolation. Good 
agreement between the two was observed (Fig. 11). 
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Fig. 11. Overlap between manually segmented drusen after interpolating missing frames and 
morphological opening vs automatically detected drusen in two scans. Yellow region 
represents overlapping areas, red region represents areas detected only by manual 
segmentation and green regions represent areas detected by automatic segmentation only. 

 

Fig. 12. Drusen area (gray) overlaid on en face angiograms. A1,A2 show the drusen detected 
by the current algorithm overlaid on the inner retinal angiogram. B1, B2 show the drusen 
overlaid on the deep plexus angiogram. A3, B3 show the drusen overlaid on the 
choriocapillaris angiogram. 

The scanning protocol utilized allowed to process the OCT signal and generate depth-
resolved en face OCT angiography (OCTA) of the retina. The split-spectrum amplitude 
decorrelation angiography (SSADA) algorithm was used to generate the flow data [53], 
motion correction technology [48, 49, 54] was used to remove motion artifacts and a 
projection-resolved algorithm [55] was applied to remove projection artifacts cast by 
superficial flow onto deeper layers. The inner retina was defined as the slab between the inner 
limiting membrane (ILM) and the outer plexiform layer (OPL), the deep plexus was defined 
as the flow within the OPL and the choriocapillaris was a slab of about 10 µm thickness 
below the Bruch’s membrane [56]. Angiograms were generated by maximum projection of 
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the flow data within the slab [57]. Then, the drusen area detected could be represented in 
tandem with the en face angiography information (Fig. 12) and the potential relationship 
between drusen area and capillary perfusion could be visualized. 

5. Discussion and conclusion 

This report demonstrates a novel method to automatically detect the area of all types of 
drusen, which is detected by OCT without the need for segmentation of the inner boundary of 
RPE. The algorithm is based on depth-resolved analysis of C-scans within two slabs located 
at different depths above the Bruch’s membrane. The inner slab detects subretinal drusenoid 
deposits, while the outer slab detects soft drusen and cuticular drusen. The challenging type of 
subretinal drusenoid deposits had been detected by multi-modal methods previously [58–61], 
but detection by OCT alone had not been previously demonstrated. The method exhibits good 
detection accuracy and repeatability. 

Methods to detect drusen that rely on the segmentation of irregular RPE are confronted 
with two separate challenges. First, small drusen deposits require highly-sensitive detection 
techniques and second, segmentation errors need to be avoided at the inner boundary of RPE. 
Disadvantages of algorithms that analyze elevation maps from segmentation results can be 
summarized as: (1) The segmentation based on graph search often fails on drusen with abrupt 
elevation, because the gradients between layers are not smoothly connected and searching for 
a neighboring pixel with the lowest connection cost is not very reliable [41, 62]. In addition, it 
is common for graph search segmentation algorithms to intentionally neglect small 
reflectance changes in the definition of cost functions, considering the effect of speckle noise. 
(2) The segmentation fails due to reflectance variance caused by shadows of large vessels, 
media opacity or pupil vignetting [63]. (3) The threshold height used to discern whether there 
is a substantial RPE line deviation from the “healthy” baseline (and hence account for the 
presence of drusen) is arbitrary, not based on histological findings and limited by the axial 
resolution of the OCT system. 

In this work, by using multiple-depth C-scan, we have circumvented the sources of 
failures or inaccuracy listed above. The reflectance on C-scan is the contrast we used to 
distinguish drusen from normal retinal tissue. The reflectivity change due to the onset of 
drusen formation (microstructural changes) should be much earlier than the production of 
substantial RPE elevation. As a result, the early drusen can be discerned by the methods 
based on reflectivity like ours, while often ignored by the methods based on layer changes. 

Speckle noise is inherent to both en face and cross-sectional images due to the 
interferometric nature of the OCT technology, and could lead to an increment of false positive 
pixels. Although this type of noise can be reduced by averaging successive scans at the same 
position, long scanning procedures are not a desirable approach when imaging diseased eyes. 
In our method, we prevent inaccuracies associated with speckle noise outside the drusen area 
by averaging across consecutive C-scans in a slab and a continuity detection routine. 

A pathology that affects the older population such as AMD is often associated with 
reduced eye transparency such as cataract, which contributes to lower signal strength scans 
and consequently lower layer contrast. Consequently, any method that attempts to measure 
drusen area has to exhibit good performance in low quality scans. While there is no method 
that reduces the high reliance of B-scan segmentation performance on fine layer contrast, 
there are many validated and well-established methods that can be used on en face images to 
accurately and reliably separate groups of pixels of different reflectance in order to detect 
atrophy areas. For this reason, our method appears more robust than those relying on retinal 
layer segmentation. 

Next, we briefly discuss an assumption that might affect the accurate evaluation of 
individual cases. Due to population variations of the outer retinal thickness, the relative 
position of the inner slab with respect to the EZ layer will vary. This method is sensitive to 
the EZ layer falling into the inner slab, therefore we set the slab’s outer boundary at the mean 
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value of the EZ-Bruch’s membrane distance found in the set of healthy subjects (20 pixels), 
assuming that the healthy part of diseased eyes is less likely to exhibit larger thickness than in 
healthy eyes. The continuity routine performed in step 10 of Fig. 2 is in charge of excluding 
from detection the positions of healthy tissue with EZ layer just reaching the outermost C-
scans of the inner slab. The good agreement with manual graders suggests that although 
sensitivity to eyes with large deviations with respect to the standard are unavoidable, the 
method is otherwise very robust to the majority of subjects. 

The running time we have reported is mainly the cost of the Bruch’s membrane semi-
automatic segmentation step. Our method still involves segmentation of this boundary, but it 
should be noted that Bruch’s membrane preserves its shape even in the presence of drusen or 
other pathologies. For this reason, segmentation of the Bruch’s membrane is a relatively 
simple task [64] and therefore, our algorithm can perform its layer segmentation routine much 
faster and more accurately than those relying on semi-automatic segmentation of the 
pathologic RPE’s inner boundary. 

Histological studies have reported choriocapillaries dropout in regions underlying drusen 
[65]. However, the relationship between drusen area and perfusion of the inner-retinal/deep 
plexus, which lies above the drusen, remains unclear [66, 67]. Since the data acquired here 
allows to simultaneously generate depth-resolved en face angiograms and a drusen map, as 
well as computation of the drusen area and the vessel density, it might be of interest to future 
investigations in the field of OCTA. Additionally, this technique may allow assessing if 
choriocapillaris flow can be detected under certain types of drusen. 

Finally, the main limitation of this work is that although a 3D technique is used and depth-
resolved information is exploited to detect drusen, volumetric quantification of drusen size is 
not possible. 

In summary, an accurate and automated drusen detection algorithm is proposed, based on 
multiple-depth C-scan analysis. By using this approach, we prevent inaccuracies caused by 
errors in the segmentation of the pathologic RPE and avoid tedious manual correction. The 
technique requires minimal operator effort since it only relies on delineating the Bruch’s 
membrane interface. Its capability to measure cuticular drusen and subretinal drusenoid 
deposits constitute an advantage over the majority of segmentation-based techniques that can 
only detect drusen that results in significant elevation of the RPE. This drusen detection 
method appears to allow earlier detection of this indicator of AMD progression in 
asymptomatic subjects. 
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